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Abstract This paper proposes a control strategy for a
cable-suspended robot based on an optimal sliding mode
approach confronted by external disturbances and
parametric uncertainties. This control algorithm is based
on the Lyapunov technique, which is not only able to
provide the stability of the end-effector with an
acceptable precision but also provides the optimal path in
which the maximum load can be carried along. In
addition, the optimization of the robot is performed
based on an optimal sliding mode (SMC) approach.
Tracking a predefined trajectory, path planning and the
calculation of its relevant Dynamic Load Carrying
Capacity (DLCC) is done based on the motors” torque and
accuracy constraints. Optimal SMC, as a robust control
algorithm, is used for controlling the stability of the
system, while the Linear Quadratic Regulator (LQR)
optimization tool is employed in order to optimize the
controller gains. The main contribution of the paper is in
calculating the DLCC of the cable robot. Finally, the
efficiency of the proposed method is illustrated by
performing some simulation studies on the ICaSbot (IUST
Cable-suspended Robot), which supports six DOFs using
six actuating cables, and experimental results confirm the
validity of the authors’ claim.
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1. Introduction

Cable transporter systems are widely used in industry,
such as in high-rise elevators, cranes, conveyer belts and
tethered satellite systems, etc. A cable-suspended robot
typically consists of a moving platform that is connected
to a fixed base by several cables. A cable-suspended robot
can precisely manoeuvre large loads and is resistant to
environmental perturbations. The main advantages of
cable-suspended robots over conventional robots are: 1) a
larger workspace for the same overall dimension of the
robot, and 2) light weight cables resulting in a very safe
and transportable system. These robots often present very
high payload-to-weight ratios. In practice, there are some
optimal control problems and so the optimization of this
critical parameter can be a valuable objective in
minimizing any extra power and energy consumption.
The spatial sample is a particular type of cable robot with
six cables. Optimizing the payload of the robot - as the
most important parameter of this kind of robot - can be
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useful in the study of different applications. Alp and
Agrawal [1] addressed the kinematic and dynamic
models, workspace, trajectory planning and feedback
controllers for parallel cable manipulators and performed
simulation and experiments on a 6-DOF cable-suspended
robot. Cables have a unique property since they cannot
provide compression force on an end-effector. This
constraint leads to performance deterioration and even
instability if it is not properly accounted for in the design
procedure. Several techniques have been suggested to
guarantee positive tension in the cables while the end-
effector is moving [1-2]. The static workspace is defined
as the set of positions wherein any operational force can
be exerted on the end-effector while all of the cables are
in positive tension [3]. There have been a number of
researchers who have applied various controllers and
dynamic modelling for cable-actuated robots, such as the
feedback linearization control method. There are two
kinds of optimal controller: open-loop and closed-loop.
Some related recent work on the open-loop optimal
control of cable robots includes the following. Wang
performs an open-loop optimal control of cable robots in
order to minimize the cables’ tension. The MAP method
(Method of approximate programming) is utilized in
order to optimize a parallel system by [4]; moreover,
Korayem et al. used the Hamilton-Jacobi-Bellman (H]JB)
method to plan the optimal path for the same cable robot
based on the DLCC objective function [5]. In an open-
loop controller, any kind of disturbance or parametric
uncertainty ruins the desired results. In decreasing the
number of these failures, researchers have suggested
using a closed-loop controller. Closed-loop studies have
also been accomplished based on the variation of
objective functions. In [6], there is presented a
homogeneous controller for tracking the trajectories of
manipulators. The workspace is
maximized in [7] using the closed-loop method. On the
other hand, path planning for soccer robots using PSO
(Particle Swarm Optimization) has been done by Wang
[8]. Furthermore, the output regulation problem for a
servomechanism with nonlinear backlash is proposed as
a case study in [9] and an observer is designed in order to
eliminate the difficulty of working with various variables
for the design of type-1 fuzzy controllers. [10] describes
the use of a genetic algorithm (GA) for the problem of
offline point-to-point autonomous mobile robot path
planning. Also, path planning for robots with motion
uncertainty and imperfect state information is performed
using a LQG (Linear Quadratic Gaussian) approach [11].
In [12], a model for a flexible cable transporter system
with arbitrarily varying cable lengths is presented. It is
shown that the SDRE technique (State dependent Riccati
Equation) is applicable for flexible cable systems with
varying lengths, while guaranteeing the performance of
the closed-loop system. Furthermore, an algorithm for the
calculation of the DLCC for a rigid cable robot which is

robot allowable
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under a closed-loop controller has been presented [13].
Moreover, designing a sliding mode controller as a
stabilizing controller for a given uncertain system has
been employed in [14]. The range of the system states in
terms of set points is found and the states in the
inequalities of the input are substituted so that the
constraints are satisfied. In contrast to the general control
laws, sliding mode control is more robust and easier to
implement. The closed-loop optimal control of cable
robots for the calculation of the maximum dynamic load
carrying capacity of cable robots is done by using a
feedback linearization controller with a LQR optimization
method [15]. Carrying the payloads is one of the important
applications of cable-suspended robots in the aerospace
industry. Both military and commercial operators exploit
this capability of helicopters to rapidly move heavy loads to
locations where the use of ground-based equipment for
transport is not possible. The transport of externally-
suspended loads is an important mission for a helicopter. In
helicopters are
replenishment and hoist operations from seagoing cargo

particular, actively used for ship

vessels, especially in adverse weather [16].

Tracking the optimal path with admissible error in a
closed-loop manner while the highest load is carried
along is ignored in the literature. This method in
planning the path considerably increases the accuracy of
final point compared to open-loop approaches and
decreases its DLCC. Therefore, in this paper, a
combination of SMC with LQR is applied for the accurate
optimal path planning of a cable system subject to its
DLCC. The sliding mode approach is employed for
stabilization and path planning between two specified
points. Moreover, the DLCC of a cable robot is evaluated
in a closed-loop manner using the SMC method. A
sliding mode is a nonlinear feedback control with a
variable structure with respect to the system states. The
main advantage of a sliding mode control is that the
system is insensitive to extraneous disturbance and
internal parameter variations while the trajectories are on
the switching surface. There are two important factors
that should be considered while calculating the DLCC of
a robot with this method, namely the maximum torques
that can be applied by the motors and the maximum
acceptable bounds of errors that the end-effector is
permitted to move within. The required constraints can
be easily satisfied with the aid of the proposed iterative
algorithm, which is based on a SMC approach. In
addition, the linearization of the equations makes it
possible to use a LQR method in order to optimize the
system for a defined objective function. This paper
illustrates a new, combined algorithm that uses both
sliding mode and LQR. Indeed, sliding mode control
gains are optimized using a LQR method. The nonlinear
state space of SMC is first linearized with the aid of a
piecewise linearization method. Afterwards, LOR is
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employed to optimize the gains of each part separately.
The sliding mode control algorithm is based on the
which confirms its strategy.
Moreover, a stable pole placement with a satisfactory
phase and gain margin is offered by a LOR optimizer.
Since the payload of the end-effector is supposed as an
important uncertainty, the closed-loop optimization
method should be robust. A survey of recent
developments shows that other methods are not robust or
adequate. Therefore, the superiority of the presented
closed-loop optimization (optimal sliding mode) over
previous methods lies in its better robustness, which can
provide higher DLCC capability.

Lyapunov technique,

The paper is organized as follows: first, the dynamic
equations of the spatial cable robot are derived. Next, a
Sliding Mode Control is presented as a powerful method
for uncertain nonlinear systems under the condition of
the absence of disturbance and in the presence of
disturbance for a predefined trajectory. Afterwards, path
planning is done based on the motors’ torque constraint
and accuracy constraint, while the control gains are
optimized using the LQR method after linearization.
Finally, an algorithm is proposed to compute the
maximum allowable load by considering the limiting
factors. In the last section, the efficiency of the proposed
algorithm is verified by comparing the simulations with
experimental tests conducted on the ICaSbot.

2. Dynamical Modelling

For the spatial case, assume a triangular-shaped end-
effector, as shown in Figure 1, which is suspended by six
and has 6

X={x,y,z,l//,®,¢}. The coordinate system of

cables degrees of freedom as

translational movement, which is established on the fixed
platform, is global while the coordinate system of the
rotational movement, which is established on the end-
effector, is local. It is provable that the dynamical equation
can be shown as [1]:

Figure 1. Spatial model of the cable robot [1]
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where D(x) is the inertia matrix for the system, C(X,X)

is the matrix of the Coriolis and centripetal terms, g(x) is
the vector of the gravity terms, T is the vector of the

cables’ tension, g is the conventional parallel

manipulator Jacobian, X is the vector of the DOFs of the
system, m is the mass of the end-effector, I is the moment
of inertia of the end-effector and q is the length of the
cables. In addition, the dynamics of the motor are as
follows:

T=1/r(c-J(d/dT(@B /X)X + X(8p/06X)) )
—-C(0B10X)X)

where ] is the matrix of the rotary inertia of the motors, ¢

is the viscous friction matrix of the motors, B is the

vector of the angular velocity of the motors and T is the
vector of the motors’ torque. By coupling these two
dynamics, we have:
T=1/r(z-J(d/dT(8f/3X)X + X(8f8/0X))-C(88/3X)X)  (3)
D(X)X +CX, X)X +g(X)==S,T (qxnT
3. Control Scheme
3.1 Sliding Mode Control
The following equation is considered:

X" = f(X)+b(X)u (4)

For the indicated cable robot, the order of the system is
(n=2), following sliding surface which is considered:

5= (%+ ) le ®)

where:
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s is called the ‘sliding surface’. In particular, the
Lyapunov sliding condition forces the system states to
reach a hyperplane and keeps them from sliding on this
hyperplane. Essentially, a SMC design is composed of
two phases: hyperplane design and controller design.
However, in this paper, a method proposed by Slotine is
used [17]. Accordingly, the sliding surface is defined as:

s=(%+ﬂ)(X—Xd):(X—Xd)+/1(X—Xd) )

To determine the control law, the derivative of the sliding
surface must be determined:

§=(X-X )+ AUX-X)) ®)
since the sliding condition is defined by:

§ < —k.Sing(s) 9)

As such, Eq. 9 - in order to satisfy the sliding condition -
must be written as:

(X —Xd) + AUX —Xd) = —k.Sing(s) (10)

In the sliding mode control, 4 i are the constant gains

of the control system. By substituting X from Eq. 10 in
Eq. 1, it can be written as below :

DO X 4K~ X )~k Sing )| (1)
+C(X, X)X + g(X) = =8, T (qupT

Combining Egs. 2 and 11, they can be expressed based on
motor torque:

r=8,7T {rD[/csign(sﬂ + rD/i(X 7Xd)7rDXd - rCXfrg} (12)
+Jf+cf
Then, the optimal path can be calculated by the following
formula:
x=|f {D"(—SJT [1/r(s, " (wh]-g- C)'()}dt (13)
W= {rD[ksign(s):I + rD/I(X -X, )—rDXd -rCX - rg}
Not only is the employed strategy robust, but so too is the
stability of the employed controlling strategy guaranteed
based on Lyapunov. In addition, the optimizer tool of

LQR provides a stable pole placement with an acceptable
phase and gain margin.
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3.2 Optimal Control Implementation

In order to find the DLCC, two main constraints -
including the required motor torque and tracking error -
are considered, which are supposed to be minimized
using the LQR method for achieving the highest load
capacity. Therefore, Eq. 10 is linearized and estimated to
three linear formulations using piecewise linearization.
Now, it is possible to use LQR for the optimization of the
closed-loop control gains. The whole control procedure is
demonstrated in Figure 2. The motors’ torque and end-
effector errors are the terms of the objective function to be
minimized for the movement of the end-effector, and so
the cost function can be defined as Eq. 14. In this cost
function, time is not considered as the terms of the
objective function since it is not involved in the DLCC
constraints. When both motors’ torques - which are
called, u( X ,t) - and tracking error constraints - which

are called ¢y ;) - saturate simultaneously, the optimal

path is achieved:

Jx)=[ (Xt Qe Xty ruXea) R Xape (1a

Desired Setpoint
Xd ¥
Sliding Mode
Regulator Controller

v

Switching Mode
Decision Centre

v
LOR Optimizer

v

Robot Plant

v

Xa Actual Output

A 4

Sensor

Figure 2 .Control procedure of the robot based on the optimal
sliding mode

where Q is the gain matrix of accuracy, R is the gain
matrix of the control input and ¢,(X,f) contains
e(X,t),e(X,t).Both of them are a symmetric positive

definite matrix. Solving this cost function for a closed-
loop state space using the Hamilton-Jacobi-Bellman
equation results in the following Riccati equation, where
the stability is assured using the Lyaponov equation [18]:
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piecewise linearized

regular SMC

s |
5

Figure 3. Piecewise linearization of the SMC methodology

SA4+ A"S+0-SBR'B"S =0 (15)

where Q is the gain matrix of the accuracy, R is the gain
matrix of the control input, A and B are state space
matrixes of closed-loop system. Solving the Riccati
equation for S results in the following optimal control
input:
wp' = K [e(X,0) (X t)] =k, e+k,é
K,”=-R'B'S (16)

kp is the gain of position error and k 4 is the gain of the

velocity error. The state equations with the LQR method
can be rewritten as follows:

é(t)= Ae(t)+ Bu(t) (17)

é=e, ;i=13,5,.,11
6., ={—R'B'S[e(X,0);e(X,0)]};:/=1,2,3,...,6

Here, matrixes A and B are defined as below:

[oo01 0 0 000 0 0 o0 0 0] [0 0 0 0 0 0]
00 00000000 0 O 1 00 0 0 0
00 0 1 000 00 00 0 00 0 0 0 0
00 00000000 O0 O 01 0 0 0 0
00 0001 000000 00 0 0 0 0
000000000000 0f 000 1 0 0 0
=0 00000010000 o000 00
00 000000000 O 00 0 1 0 0
00 0 000000 1 00 00 0 0 0 0
00 0 00000000 0 00 0 0 1 0
00 00000000 0 1 00 0 0 0 0
[0 000000000 0 0] lo o 0 0 0 1]

The state equations with the SMC method, according to
Eq. 10, can be rewritten as follows:

i

&, = {=kSign(s)— 2¢} ;; j =1,2,3,...,6

{e, =e,;1=13,5,.,11 (18)

www.intechopen.com

Here, and in order to use LQR as an optimizer tool for
linear systems, a piecewise linearization method is used
for Eq. 18 to divide the Sign(s) into three linear parts
which can be optimized separately using LQR. This
linearization results in the following controlling inputs
for each area:

ug' =k+A(e(X,0)=K'[e;e];5 > 2.5
ug' =—k+A(e(X,1)) =K' [e;e];5 <=2.5
ug =0.1ks + A(e(X,0)) =K' [e;e];-2.5<5<2.5

(19)

This control input is then considered to be equal with the
optimized one of Eq. 16. In fact, the state space equations
of LQR and SMC are compared in Egs. 17 and 18 and
then the optimal k, A gains are calculated as follows:

k=k,e
—>s5>2.5
A=k,

k=-k,e
A=k,
0.1kA=k,
{0.1k+/1 =k,

K, =K > { Ss5<-25 (20)

—>-2,5<s5<2.5

4. Determining the Maximum Load Carrying Capacity

The dynamics of the cable robot can be used to extend its
payload capability while taking into account torque and
tension as realistic constraints. By considering the actuator
torque and accuracy constraints and adopting a logical
computing method, the maximum load-carrying capacity of
a cable robot for a predefined trajectory can be computed.
The actuator torque constraint is formulated based on the
typical torque-speed characteristics of DC motors [13]:

t,=k —ky4;t, = -k 21

u

_kzq

where T, and 7, are the upper bound and the lower

bound of actuator constraint respectively. The coefficients
k, are defined as:

(22)

where T is the stall torque and w,, is the maximum no-

load speed of the motor. The algorithm used for finding the
DLCC in the closed-loop case is shown in Figure 4. The
actuator torque at each point is computed with respect to
its bounds and the accuracy of the end-effector tracking is
determined. Using this method, we can find DLCC at each
time and so it will be identified for the whole of the path.
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v

Choosing an initial

Increasing the
predicted DLCC

value for m ) for

a given trajectory

v

Gaining the dynamic
equations and forming
the state space

v

Computing the control
input based on the SMC
method Eq. 12

Final DLCC
A

A 4

NO yes

Accuracy
constraint

A4

Optimal path
planning by LOR and
SMCEgs. 15-20

v

Calculating the
required motors’
torque, actual tracking

Satisfied?

Torque

constraintn error and the tension

of the cables for a
predicted DLCC

Figure 4. Flowchart of the computing dynamic load carrying
capacity

The maximum DLCC is estimated using the mentioned
iterative process in which a pure analytic process is done
in each repetitious trend (SMC+LQR). As such, the
maximum DLCC is evaluated using an analytic method,
which is local
optimization syndrome.

secure from non-conversancy or

5. Simulation Results for a Predefined trajectory
5.1 Simulation of Control Procedure

To investigate the proposed controller, some simulation
studies are presented for a spatial robot.

t<=4,
x = 0.05%cos(4*pi*(t"2)/64),
y = 0.05*sin(4*pi*(t"2)/64),

t> 4
x =0.05*cos(4*pi*((-t+ 8)"2)/64)
y =-0.05*sin(4*pi*((-t+8)"2)/64)
z=045;y =0
®=0;9p =0

Table 1. Reference input for a spatial simulation

Int J Adv Robotic Sy, 2012, Vol. 9, 168:2012

Name Symbol Value Unit
Momentum of I Loe=Iyy =1847779.15*10¢ kg m*
the inertia of the Izz = 2% Ixx
end-effector
Control A diag[20]
coefficient
Control gain K diag[200]
Radius of the r diag[0.015] m
motor
Momentum of J diag[3309.21%¥107"] kgm®
the inertia of the
pulley

Table 2. Characteristics of the spatial system

0.05

0.04 -

e inputcircle
output circle
0.03 - 1

0.02f

y(m)

-0.01

-0.02

-0.03-
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0.0 L L L
-0.05 -0.04 -0.03 -0.02 -0.01 0

x(m)

L L L
0.01 0.02 0.03 0.04 0.05

x Error
y Error
—— -z Emor |4
Teta Error
Fi Error

-1.51 ! —— -SiEmor |4

Time(sec)

Figure 5. Input-output path and error of the spatial simulation in
the absence of disturbance

In these studies, a circular trajectory is assumed whereby
the end-effector with the controller follows the path
perfectly. The simulation results are shown in the Figures.
The parameters used in the simulation are given in Tables
1 and 2. The motor input-output path, torque, cable
tension and error profile are shown in Figures 5 and 6. It
is observable that all of the cable tensions are positives, as
it was expected. It can be seen than an excellent
compatibility exists between the input and output with
the aid of the proposed SMC method. Practical robotic
systems have inherent system perturbations, such as
parametric uncertainties and external disturbances - e.g.,
static friction, noise in control signals, etc. In this paper,
the behaviour of the cable robot in the presence of
external disturbances is also considered. Let us denote the
disturbances by d =0.5Sin(5¢), which is applied to the
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control input according to Eq. 12. The real dynamic
equation of the cable robot with the disturbance term is
represented as follows:

r:?]*T {rD[kSign(s)]+rDA(X—Xd)—rDXd —rCX—rg} 23
+JB+cf+d

3
T
)
5
2
o
8
2.6 .
0 1 2 3 4 5 6 7 8
Time(sec)
0.09 — . .
/ N — - MOTOR1
0.08} e . MOTOR2 H
/ / \ MOTOR3
0.07} / | . MOTOR4 H
| \ MOTORS
0.06 — , ,\ /\ —— - MOTORS |

NN
\ N~ - |
0.04F « \ } o
AN N /

0.03 NN \,\ i
0.02 - \ |
\ /

\ N
0.01F ) |
N
0 . . . . . . .
0 1 2 3 4 5 6 7 8
Time(sec)

Figure 6. Torques and tensions profiles of the spatial simulation
in the absence of disturbance

The dynamic response of the system in the presence of
disturbance is shown in Figures 7 and 8:

0.05

* input circle
output circle []

0.031

0.02

0.01-

y(m)
=

-0.03-

-0.04

-0.05
-0.06

-0.04 -0.02 0

x(m)

0.06

Figure 7. Input-output path of the spatial simulation in the
presence of disturbances
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Figure 8. Torques, tensions and error profiles of the spatial
simulation in the presence of disturbances

It can be seen that the destructive external disturbance is
successfully filtered with the aid of the proposed SMC
controller since the fluctuations are neutralized by
automatically the switching of the actuators’ torque,
which eventually provides a smooth tracking with an
acceptable error. However, the most sensitive DOF that
shows the highest error is related to z, which is engaged
with gravity effects and, again, is controlled properly
with the aid of the proposed SMC. Now, a comparison
between the employed controlling strategy in this paper
and the feedback linearization approach is performed in
Figure 9 in order to control the end-effector on a desirable
path in a closed-loop manner [13] in the presence of
disturbance, such as d =0.5sin(50¢) . This simulation is

done on a cable robot with 2-DOFs using three actuating
cables. A circular trajectory of the cables is assumed.
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input-output circles
T T T

0.25

input circle
output circle

0.2r

0.151

0.1r

0.05-

(b)

Figure 9. Input-output path in the absence of disturbance based
on the SMC method (a) and based on the LQR method (b)

It can be seen that feedback linearization suffers from
instability while stability is guaranteed in the proposed
optimal SMC. As was shown, the optimal SMC method
has improved the trajectory of the predefined path in
comparison to the optimal feedback linearization method.

5.2 Simulation of the DLCC Algorithm

Based on the mentioned algorithm of the maximum
payload, the calculation of DLCC according to the upper
and lower limits of the torques and accuracy is
performed. The saturation of motors’ torque is presented
in Figure 10 and, as can be seen, the first and fifth motors
are saturated at the middle of the simulation.

To achieve the maximum payload, the optimizer tool
should provide the gains in manner such that the torque
and error saturate simultaneously. This expectation can
be seen to be satisfied here. As was shown in Figure 11,
the error constraint is saturated for the system. By
applying the proposed algorithm for closed-loop plant
when the motors” torque and tracking error constraints
saturate simultaneously, the maximum allowable load is
computed about m, = 4.7kg .
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Figure 10.Saturation profile of the motor’ torques in the spatial
simulation
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Figure 11. Error profiles of the spatial simulation

6. Simulation Results for Path Planning

6.1 Simulation of the Control Procedure

In this section, a simulation is performed for moving
between point (0.05, 0, and 0.45) and point (0, 0, and 0.1). The

applied boundary conditions in the simulation are displayed
in Table 3 and other specifications are listed in Table 4.

Value Unit
0.59,0.085 m

Name Symbol
Half of the base and a,b
triangle end effector

Error gain matrix (0]

diag[1];z=10,

Input gain matrix R

diag[1];z=0.1

Table 3. Properties of the simulated spatial robot
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Parameter Symbol Value Unit
Added mass m, 4 kg
: 286.47
Motor's Max. no W, Rad/s
load speed
Motor stall T, 075 N.m
torque

Table 4. Simulated motor characteristics of the spatial cable
robot

The objective of the optimization is torque and error.
Time is not considered as the cost function of the
optimization process and so LQR with infinite time is
used. However, the time of the end-effector convergence
to the set point is controllable by increasing or
decreasing the accuracy matrix of LQR (Q). The
simulations show that the convergence occurred in a
logical finite time (about 10 seconds). The payload of the
end-effector is increased as the parametric uncertainty,
from 1kg up to 3kg. The simulations of the optimal path

and errors with two various error gains are shown in
Figures 12 and 13.

s — motor torque 1 Q=50
— motor torque 5 Q=50
— motor torque 6 Q=50

] . motor torque 1 Q=10 )
---- motor torque 5 Q=10

o4
Torque
(Nm)

motor torque 6 Q=10

time{sec)

Figure 14. Torque profile between two points with different
controller gains

As was shown, the accuracy of regulation process is
increased because of enhancement of the controller
gains from Q=10 to Q=50. The error profiles illustrate
that the controller with higher gains has an error equal
to 0.0lm while the controller with lower gains has an
error of 0.04m. The torque of motors 1, 5 and 6 is

compared for two different controller gains as a sample
in Figure 14.

controller gains (k)

y(m) 0.01 Xt
0.4 4
Figure 12. Optimal path planning between two points with
) L 06 ‘ A ‘ ‘ ‘ A A ‘ A
different controller gains c * 2 s 4 5 & 7 &8 9 10
a
0.4 : : : : : : : : : (@)
_ controller gains (k)
Q=50 24 T T T
0.35 Q=101 \‘ k3
23 B
22 *& q
\
21p \ 4
E 20} \\ //—/// E
§ \ //,//
5 1o | e B
| ///
18F | - g
\ ~
. e ]
\\ -
161 \_ e 4
15 ‘ s s s ‘ ‘ A s s
1 2 3 4 5 6 7 8 9 10
Time(sec) (b)

Figure 13. Error profile between two points with

different
controller gains

Figure 15. The error gains of the X, y,¥/, Q, @ directions (a)
and the error gain of the z direction (b)
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First of all, it can be seen that in the first moments, and
because of the greatest error, the amount of torque is
maximum so as to compensate for this error. Afterwards,
the torque reduces logarithmically. Again, it is obvious
that controller with the higher error gains applies further
torque for the enhancement of final point accuracy and so
the torque of the controller with Q=50 is higher than the
controller with Q=10. Accordingly, the coefficients of
SMC for Q=50 are calculated as a sample and are shown
in Figure 15.

It can be seen that, as a consequence of the gravity on the
load, the error of the end-effector in the z direction is of
an upper order compared to the other DOFs; as such, and
based on this detail, the error gain of the z direction has
to be selected as significantly bigger than the other DOFs
(Figure 15). Also, it is proven here that the optimal gain of
SMC needs to change during the time so as to produce
the optimal path with the least energy.

6.2 Simulation of the DLCC Algorithm

It should be mentioned that, in each of the simulation
cases, increasing the load in the iteration loop is
performed until the first motor saturates simultaneously
with the accuracy constraint. According to the precision
constraint, the payload of the robot can be increased as
long as the end-effector error does violate the permissible
error bound. This procedure is repeated for heavier
payloads until the first error saturation occurs. The DLCC
of robot is the load, for which the torque and error remain
within the permissible error bound. The simultaneous
optimization of the torque and error is the main method
in order to maximize the DLCC of the robot. The same
algorithm results in about a 4kg load capacity, which
causes the first saturation at motors 2, 4 and 6, as is
shown in Figure 16, and the torques of other motors are
the same and are shown in Figure 17.

saturation of motor 1

0.8 7

06} pm e m T :
”a — —

04phe” | mm——— motor torque | A
lower bound

0.2 4

Actuator Torque(Nm)
o
T
L

Time(sec)

Figure 16. Saturation profile of the motor torques of the spatial
simulation for motors 1, 3 and 5
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saturation of motor 4

0.8 R
s — 1
0.6 — R
L / upper bound
0.4 — motortorque |
g lower bound
g 0.2} R
= or 1
5
g 0.2} ]
0.4} R
o6l |
0.8k B
0 1 2 3 4 5 6 7 8 9 10

Time(sec)

Figure 17. Saturation profile of the motor torques of the spatial
simulation for motors 2, 4 and 6

As was mentioned above, in the first moments, the torque
is at the highest value so as to compensate for the error
which is at its maximum during the initial moments.
Afterwards, the torque decreases logarithmically as a
result of LQR wusage. However, for the simulated
boundaries, the movement is upward and so the opposite
happens; consequently, motor saturation occurs during
the final moments of the simulation. Moreover, it can be
seen that error constraint is saturated for the closed-loop
system for a 4kg payload while the motors’ torque did
not violate the allowable bound (Figure 18).

0.35

0.3F ~
0251 \ -

0.2 \ 4

0.15} L E

o1} N

Error(m)
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N
©
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o
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©
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Figure 18. Error saturation profile
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Figure 19. Planning of the optimal path
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2 controller 9aindk) A=[-10.9545 -22.8035 -71.8842 -10.9545 -10.9545 -10.9545]  (24)

15 — kx| |
. - As was mentioned in the previous section with regard to
the spatial cable robot, because of the gravity effect on the
ne ] load the error gain in the z direction - which is called k3 -
o is significantly bigger than the other error gains.
. | Furthermore, the gains are time-dependent. By applying
L ] the proposed algorithm for a closed-loop plant, the
I I R B T B A maximum allowable load computed is m, = 4 kg
Time(sec)
where the motors are saturated.
@)

controller gain

7. Experimental Results for Path Planning

i T
a
- In this step, the simulation results should be verified by
b experiment. To provide an example, a point-to-point test
=l is performed on the spatial cable-suspended robot, which
wl ] is designed and manufactured in IUST, supporting 6-
ol /‘J—_f— DOFs (Figure 21).
® 4 2 § 4 s ®o ¢ & § ®

time(sec)

(b)

Figure 20. The error gains in the X, y,/,®, @ directions (a)

and the error gain in the z direction (b)

It can be seen that using the optimal SMC as a closed-loop
controller considerably increases the accuracy of the final
point compared to open-loop approaches (Figure 19). The
red line is the optimal closed-loop approach, which has
the minimum error at the final point with the adjustment
of the coefficient of LQR.

The SMC controller gains after the optimizations are
shown in Figure 20.

Setpoint SEeNSOTS |- - - - - o o o o e R
N
AY

Sliding mode
control +LQR

Desired
torque

controller

Encoders

[ Optimal path ] Motor control  — ______________________. ’

Actual
speed of
the motor

Actual
path

(Position sSensors

_________________________________________

End-effector control

e robot of ICaSbot for optimal regulation
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Figure 23. DOFs of the system in comparison with the
experimental results

The geometrical properties of the cable-suspended robot
in IUST are listed in Table 5.

Body
Height 120cm
Side length of the base triangle 100-200cm
Weight 350kg
End-effector
Side length of the base triangle 17cm
Thickness 8cm
Weight 1,100g

Table 5. Features of the designed IUST cable robot

Generally, the overall scheme of the optimal control of
the ICaSbot in a closed-loop manner is depicted in the
following flowchart. As it can be seen from Figure 22 the
cable robot in the experimental test has been controlled in
a closed-loop manner. The optimal path, which is gained
by the SMC method, is used as the desired path in the
experiment test. The optimal path between the following
points is supposed to be extracted experimentally with
the aid of the ICaSbot cable robot.

The test is performed by moving between point (0.05,
0.05, 1) and point (-0.05, 0, 0.8). Some of the comparison
profiles between the simulation and experiment results

are shown. For example, the DOFs of the system and the
velocity of some motors are plotted in Figures 23 and 24.
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Figure 24. Angular velocity of the motors in comparison with the
experimental results
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In point-to-point control, the profiles decrease
logarithmically during the process. There are several
reasons for the oscillatory behaviour of the experimental
results, including motor clearance, cable vibration, the
existence of the motor gearbox and the low accuracy of
the sensors and encoders. The reason for the higher value
of the motor speed for the simulation profiles during the
initial moments of movement compared with the
experimental results is due to the high inertia of the
motor in reality. Moreover, since the most destructive
effect is a result of gravity, the compatibility of the
simulation and experiment is better for x,y rather than for
z. These differences will be compensated for afterwards
thanks to designed controller. According to these results,
it can be seen that the experimental results are highly
compatible with the simulation results and, thus, path
planning can be easily performed with the aid of the
proposed closed-loop controller based on an optimal
SMC approach. The simulations illustrate the efficiency of
the proposed method and the laboratory-based
experimental test on a 6-DOF cable-suspended robot
confirms them. Therefore, in this paper, SMC - as a robust
control algorithm - is used. The advantage of the
proposed algorithm lies in the calculation of the DLCC of
the cable robot using a closed-loop computational
technique based on the SMC algorithm. The controlling
gains of the SMC are chosen in a way such that no
considerable chattering occurs during the process of path
planning. The simulation results demonstrate this claim
since the path planning is done with a smooth parabolic
decrease. However,
experimental results are due to the
uncertainties of the manufactured ICaSbot (including
those of the joint flexibilities, cable elasticity and
structural frictions) and the low resolution of the
employed sensors.

the observed vibrations of the
structural

8. Conclusions and Discussion

This paper addressed the issue of the optimal control of a
6-DOF spatial cable robot of IUST. An optimal sliding
mode control was implemented for it as a stabilizing
controller insofar as it is faced with external disturbances
and parametric uncertainties for a predefined trajectory.
In addition, a new closed-loop optimal control method
between two points was presented in order to plan the
optimal path during an optimal regulation process. It was
seen that in using Linear Quadratic Regulator (LQR) for
the optimization of the closed-loop control gains, the
motors’ torques and end-effector errors were the terms of
objective function
movement of the end-effector. As such, path planning is
performed subject to the DLCC of the robot. In addition,
this paper presented an iterative approach for the
calculation of the DLCC of cable-suspended robots in a
closed-loop manner and based on the optimal SMC

that should be minimized for the

www.intechopen.com

approach. It was seen that the destructive effect of
disturbances could be considerably neutralized with the
aid of the proposed controller. It was observed that, by
applying the sliding mode control in a predefined
trajectory, the controlled behaviour of a cable robot was
robust in relation to the initial condition errors and
external disturbances and could trace the path with
admissible error. The most sensitive DOF, with the
largest error, z, which is engaged with gravity effect, is
roughly stabilized using the mentioned controller. It was
concluded that for planning the optimal path between
two points, the controller with higher error gains applies
further torque for the enhancement of final point
accuracy. It was seen that the optimal controlling gains of
the SMC should be time-dependent in order to provide
the highest DLCC. The maximum payload of the robot,
considering  the
predefined trajectory was also calculated, which was
equal to 4.7 (kg), and for path planning between two
points, which was equal to 4 (kg). It was seen that using
the optimal SMC as a closed-loop controller in planning
the path considerably increases the accuracy of the final
point compared to open-loop approaches. It was
concluded that the predefined trajectory could be
controlled easily with a pure SMC but that path
planning between two given arbitrary points should be
performed using a combination of SMC and LQR. In
many of the process control applications, the purpose of
the control system lies in either keeping the output
constant or else in tracking a time variable set point. In
this paper, the purpose of point-to-point control was to
achieve a zero steady-state error movement with the
consumption of minimum energy while a time variable
set point is tracked during a predefined trajectory.
Because the nature of point-to-point movement is to
regulate, the order of the system is more than the input
order and so the steady-state error moves towards zero.
The simulation results proved that not only is SMC
applicable for the accurate tracking of cable systems but
also that the combination of SMC with LQR is
appropriate for their accurate path planning and provides
a good closed-loop calculation of the DLCC. All the
discussions can be briefly abstracted in relation to one
major purpose, which was the creation of a schemata of
an optimal regulator based on the sliding mode technique
in order to maximize the DLCC of the robot. The
superiority of the presented closed-loop optimization
(SMC) over the previous methods lay in its better
robustness, which could provide higher DLCC capability.
The superiority of the SMC over the FLC (feedback
linearization controller) was also proved. The optimal
SMC method was compared with the feedback
linearization approach in the presence of disturbance. The
simulation results proved that the SMC method is more
robust compared to other approaches. Therefore, this
method provides higher accuracy and so increases the

parametric uncertainties for a
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DLCC, which can be carried by the cable robot. Finally,
the experimental results demonstrated the validity of the
proposed controller. The efficiency of the designed
controller was verified by comparing the results with
experimental tests conducted on the ICaSbot. The results
showed a good match between the theory and the
experiment.

9. References

[1] A. B. Alp and S. K. Agrawal, “Cable Suspended
Robots: Design, Planning and Control”, in Proc. Int.
Conf. Robotics and Automation, Washington, DC,
pp. 4275-4280, 2002.

[2] S. Oh and S. K. Agrawal, “Cable-Suspended Planar
Robots with Redundant Cables: Controllers with
Positive Cable Tensions”, IEEE Trans. Robot, vol. 21,
no. 3, pp. 457-464, Jun. 2005.

[3] P. Gallina, A. Rossi and R. L. Williams II, “Planar
Cable-Direct-Driven Robots, part ii: Dynamics and
Control”, in Proc. of the ASME Design Engineering
Technical Conf, vol. 2, pp. 1241-1247, 2001.

[4] K. T.Oen, L. Chun and T. Wang, “Optimal Dynamic
Trajectory Planning for Linearly Actuated Platform
Type Parallel Manipulators Having Task Space
Redundant Degree of Freedom”, J. Mechanism.
Machine. Theo., 2007.

[5] M. H. Korayem, M. Bamdad and S. Bayat, “Optimal
Trajectory Planning with Dynamic Load Carrying
Capacity of Cable-suspended Manipulator”, IEEE
Int. Symposium Mechatronics and its Applications,
ISMA, pp. 1-6, 2009.

[6] N. R. Cazarez-Castro, L. T. Aguilar and O. Castillo,
“An Observer for the Type-1 Fuzzy Control of a
Servomechanism with Backlash Using Only Motor
Measurements”, Soft Computing for Intelligent
Control and Mobile Robotics, vol. 318, pp. 405-421,
2011.

[7] S. Behzadipour and A. khajepour, “Time-optimal
Trajectory Planning in Cable-based Manipulators”,
IEEE Trans. Robot., vol. 22, no. 3, pp. 559-563, 2006.

[8] L. Wang, Y. Liu, H. Deng and Y. Xu, " Obstacle-
avoidance Path Planning for Soccer Robots Using
Particle Swarm Optimization", in Proceedings of the
2006 IEEE Int.Conf on Robotics and Biomimetics,
Kunming, China. December 17-20, 2006.

14 IntJ Adv Robotic Sy, 2012, Vol. 9, 168:2012

[9] L. T. Aguilar and O. Castillo, “Tracking Control for
Robot  Manipulators ~ Homogeneous  Output
Feedback”. Proceedings of the third IASTED int.
Conf. on Circuits, Signals and Systems, Marina del
Rey, CA, USA, October 24-26, 2005.

[10] O. Castillo, L. Trujillo and P. Melin, “Multiple
Objective Genetic Algorithms for Path-planning
Optimization in Autonomous Mobile Robots”, Soft
Computing a Fusion of Foundations, Methodologies
and Applications, vol. 11, no. 3, pp. 269-279, 2007.

[11] J. V. D. Berg, P. Abbeel and K. Goldberg, “LQG-MP:
Optimized Path Planning for Robots with Motion
Uncertainty and Imperfect State Information”, The Int.
J. of Robotics Research, vol. 30, no. 7, pp. 895-913, 2011.

[12] Y. Zhang, S. K. Agrawal, R.Hemanshu, M.].Piovoso,”
Optimal Control using State Dependent Riccati
Equation (SDRE) for a Flexible Cable Transporter
System  with  Arbitrarily Varying Lengths”,
Proceedings of the 2005 IEEE Conference on Control
Applications Toronto, Canada, August 28-31, 2005.

[13] M. H. Korayem, H. Tourajizadeh and M. Bamdad,
“Dynamic Load Carrying Capacity of Flexible Cable
Suspended Robot:Robust Feedback Linearization
Control Approach”, Int. J. Robot and Systems, vol.
60, pp. 341-363, 2010.

[14] S. R. Oh, S. K. Agrawal, “Sliding Mode Control and
Feasible Workspace Analysis for a Cable Suspended
Robot,” in Proc. Amer. Control Conf, Boston, MA,
pp. 4631-4636, 2004.

[15] H. Korayem, H. Tourajizadeh, “Dynamic Maximum
DLCC of Spatial Cable Robot for a Predefined
Trajectory Within the Workspace Using Closed Loop
Optimal Control Approach”, J. Intell. Robot. Syst.,
vol. 63, pp. 77-99, 2011.

[16] So. R. Oh, Ji. Ryu, S. K. Agrawal. Ryu, "Dynamics
and Control of a Helicopter Carrying a Payload
Using a Cable-Suspended Robot”, J. of Mechanical
Design, vol.128, no. 5, pp. 1113-1121, 2006.

[17]]. ]J. E. Slotine and S. S. Sastry, “Tracking Control of
Nonlinear Systems using Sliding Surfaces, with
Application to Robot Manipulators”, Int. J. Cont vol.
38, no. 2, pp. 465492, 1983.

[18] F. Lin, “Robust Control Design an Optimal Control
Approach”, Wayne State University, USA and Tongji
University, China, Publisher: Wiley, England , 2007.

www.intechopen.com

www.manaraa.com



© 2012. This work is published under
http://creativecommons.org/licenses/by/3.0/(the “License”). Notwithstanding
the ProQuest Terms and Conditions, you may use this content in accordance
with the terms of the License.

www.manharaa.com




